vllm.transformers_utils.configs.hunyuan_vl ¶
HunYuanVLConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/hunyuan_vl.py
keys_to_ignore_at_inference class-attribute instance-attribute ¶
sub_configs class-attribute instance-attribute ¶
sub_configs = {
"vision_config": HunYuanVLVisionConfig,
"text_config": HunYuanVLTextConfig,
}
__getattribute__ ¶
Source code in vllm/transformers_utils/configs/hunyuan_vl.py
__init__ ¶
__init__(
text_config=None,
vision_config=None,
im_start_id=120118,
im_end_id=120119,
image_token_id=120120,
im_newline_id=120121,
video_start_id=120122,
video_end_id=120123,
**kwargs,
)
Source code in vllm/transformers_utils/configs/hunyuan_vl.py
__setattr__ ¶
Source code in vllm/transformers_utils/configs/hunyuan_vl.py
HunYuanVLTextConfig ¶
Bases: PretrainedConfig
This is the configuration class to store the configuration of a [HunYuanVLTextConfig]. It is used to instantiate an HunYuan model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to that of the HunYuan-7B. Hunyuan-7B-Instruct tencent/Hunyuan-7B-Instruct.
Configuration objects inherit from [PretrainedConfig] and can be used to control the model outputs. Read the documentation from [PretrainedConfig] for more information.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
vocab_size | `int`, *optional*, defaults to 290943 | Vocabulary size of the HunYuan model. Defines the number of different tokens that can be represented by the | 290943 |
hidden_size | `int`, *optional*, defaults to 4096 | Dimension of the hidden representations. | 4096 |
intermediate_size | `int`, *optional*, defaults to 11008 | Dimension of the MLP representations or shared MLP representations. | 11008 |
num_hidden_layers | `int`, *optional*, defaults to 32 | Number of hidden layers in the Transformer decoder. | 32 |
num_attention_heads | `int`, *optional*, defaults to 32 | Number of attention heads for each attention layer in the Transformer decoder. | 32 |
num_key_value_heads | `int`, *optional* | This is the number of key_value heads that should be used to implement Grouped Query Attention. If | None |
hidden_act | `str` or `function`, *optional*, defaults to `"silu"` | The non-linear activation function (function or string) in the decoder. | 'silu' |
max_position_embeddings | `int`, *optional*, defaults to 2048 | The maximum sequence length that this model might ever be used with. | 2048 |
initializer_range | `float`, *optional*, defaults to 0.02 | The standard deviation of the truncated_normal_initializer for initializing all weight matrices. | 0.02 |
rms_norm_eps | `float`, *optional*, defaults to 1e-05 | The epsilon used by the rms normalization layers. | 1e-05 |
use_cache | `bool`, *optional*, defaults to `True` | Whether or not the model should return the last key/values attentions (not used by all models). Only relevant if | True |
pad_token_id | `int`, *optional*, defaults to 0 | Padding token id. | 0 |
bos_token_id | `int`, *optional*, defaults to 1 | Beginning of stream token id. | 1 |
eos_token_id | `int`, *optional*, defaults to 2 | End of stream token id. | 2 |
eod_token_id | int, *optional*, defaults to 3 | Token ID representing the end-of-document marker. Used to indicate the termination of a text sequence. Example: In multi-document processing, this token helps the model distinguish between separate documents. | 3 |
pretraining_tp | `int`, *optional*, defaults to 1 | Experimental feature. Tensor parallelism rank used during pretraining. Please refer to this document to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to this issue. | 1 |
tie_word_embeddings | `bool`, *optional*, defaults to `False` | Whether to tie weight embeddings | False |
rope_theta | `float`, *optional*, defaults to 10000.0 | The base period of the RoPE embeddings. | 10000.0 |
rope_scaling | `Dict`, *optional* | Dictionary containing the scaling configuration for the RoPE embeddings. Currently supports two scaling strategies: linear and dynamic. Their scaling factor must be a float greater than 1. The expected format is | None |
attention_bias | `bool`, defaults to `False`, *optional*, defaults to `False` | Whether to use a bias in the query, key, value and output projection layers during self-attention. | False |
attention_dropout | `float`, *optional*, defaults to 0.0 | The dropout ratio for the attention probabilities. | 0.0 |
head_dim | `int`, *optional*, defaults to 128 | The attention head dimension. | None |
Source code in vllm/transformers_utils/configs/hunyuan_vl.py
73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 | |
keys_to_ignore_at_inference class-attribute instance-attribute ¶
__init__ ¶
__init__(
vocab_size=290943,
hidden_size=4096,
intermediate_size: int = 11008,
num_hidden_layers=32,
num_attention_heads=32,
num_key_value_heads=None,
hidden_act="silu",
max_position_embeddings=2048,
initializer_range=0.02,
rms_norm_eps=1e-05,
use_cache=True,
pad_token_id=0,
bos_token_id=1,
eos_token_id=2,
eod_token_id=3,
pretraining_tp=1,
tie_word_embeddings=False,
rope_theta=10000.0,
rope_scaling=None,
attention_bias=False,
attention_dropout=0.0,
head_dim=None,
**kwargs,
)
Source code in vllm/transformers_utils/configs/hunyuan_vl.py
_rope_scaling_validation ¶
Validate the rope_scaling configuration.
Source code in vllm/transformers_utils/configs/hunyuan_vl.py
HunYuanVLVisionConfig ¶
Bases: PretrainedConfig
Source code in vllm/transformers_utils/configs/hunyuan_vl.py
anyres_vit_max_image_size instance-attribute ¶
learnable_mlp_pooling_size instance-attribute ¶
__init__ ¶
__init__(
hidden_act="gelu",
hidden_size=1152,
intermediate_size=4304,
interpolate_mode="bilinear",
rms_norm_eps=1e-05,
learnable_mlp_pooling_size=0,
num_attention_heads=16,
num_key_value_heads=None,
num_channels=3,
num_hidden_layers=27,
out_hidden_size=4096,
patch_size=16,
remove_prenorm=True,
spatial_merge_size=2,
temporal_patch_size=1,
resize_resolution=2048,
img_max_token_num=4096,
max_image_size=2048,
video_max_image_size=768,
video_min_image_size=256,
min_image_size=512,
anyres_vit_max_image_size=2048,
max_vit_seq_len=16384,
text_hidden_size=3072,
**kwargs,
)