vllm.transformers_utils.processors.hunyuan_vl_image ¶
Image processor class for HunYuanVL.
HunYuanVLImageProcessor ¶
Bases: BaseImageProcessor
Source code in vllm/transformers_utils/processors/hunyuan_vl_image.py
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 | |
image_mean instance-attribute ¶
image_std instance-attribute ¶
model_input_names class-attribute instance-attribute ¶
__init__ ¶
__init__(
do_resize: bool = True,
size: dict[str, int] | None = None,
resample: PILImageResampling = BICUBIC,
do_rescale: bool = True,
rescale_factor: int | float = 1 / 255,
do_normalize: bool = True,
image_mean: float | list[float] | None = None,
image_std: float | list[float] | None = None,
do_convert_rgb: bool = True,
min_pixels: int | None = None,
max_pixels: int | None = None,
patch_size: int = 16,
temporal_patch_size: int = 2,
merge_size: int = 2,
**kwargs,
) -> None
Source code in vllm/transformers_utils/processors/hunyuan_vl_image.py
_preprocess ¶
_preprocess(
images: ImageInput | VideoInput,
do_resize: bool | None = None,
size: dict[str, int] | None = None,
resample: PILImageResampling = None,
do_rescale: bool | None = None,
rescale_factor: float | None = None,
do_normalize: bool | None = None,
image_mean: float | list[float] | None = None,
image_std: float | list[float] | None = None,
patch_size: int = 16,
temporal_patch_size: int = 2,
merge_size: int = 2,
do_convert_rgb: bool | None = None,
data_format: ChannelDimension | None = FIRST,
input_data_format: str | ChannelDimension | None = None,
)
Preprocess an image or batch of images. Copy of the preprocess method from CLIPImageProcessor.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
images | `ImageInput` | Image or batch of images to preprocess. Expects pixel values ranging from 0 to 255. If pixel values range from 0 to 1, set | required |
do_resize | `bool`, *optional*, defaults to `self.do_resize` | Whether to resize the image. | None |
size | `dict[str, int]`, *optional*, defaults to `self.size` | Size of the image after resizing. | None |
resample | `PILImageResampling`, *optional*, defaults to `self.resample` | Resampling filter to use if resizing the image. This can be one of the | None |
do_rescale | `bool`, *optional*, defaults to `self.do_rescale` | Whether to rescale the image. | None |
rescale_factor | `float`, *optional*, defaults to `self.rescale_factor` | Scale factor to use if rescaling the image. | None |
do_normalize | `bool`, *optional*, defaults to `self.do_normalize` | Whether to normalize the image. | None |
image_mean | `float` or `list[float]`, *optional*, defaults to `self.image_mean` | Mean to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | None |
image_std | `float` or `list[float]`, *optional*, defaults to `self.image_std` | Standard deviation to use if normalizing the image. Can be a float or a list of floats corresponding to the number of channels in the image. | None |
patch_size | `int`, *optional*, defaults to `self.patch_size` | The spatial patch size of the vision encoder. | 16 |
temporal_patch_size | `int`, *optional*, defaults to `self.temporal_patch_size` | The temporal patch size of the vision encoder. | 2 |
merge_size | `int`, *optional*, defaults to `self.merge_size` | The merge size of the vision encoder to llm encoder. | 2 |
do_convert_rgb | `bool`, *optional*, defaults to `self.do_convert_rgb` | Whether to convert the image to RGB. | None |
data_format | `ChannelDimension`, *optional*, defaults to `ChannelDimension.FIRST` | The channel dimension format for the output image. Can be one of: - | FIRST |
input_data_format | `ChannelDimension` or `str`, *optional* | The channel dimension format for the input image. Can be one of: - | None |
Source code in vllm/transformers_utils/processors/hunyuan_vl_image.py
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 | |
get_number_of_image_patches ¶
A utility that returns number of image patches for a given image size.
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
height | `int` | Height of the input image. | required |
width | `int` | Width of the input image. | required |
images_kwargs | `dict`, *optional* | Any kwargs to override defaults of the image processor. | None |
Returns: int: Number of image patches per image.
Source code in vllm/transformers_utils/processors/hunyuan_vl_image.py
preprocess ¶
preprocess(
images: ImageInput,
videos: VideoInput = None,
do_resize: bool | None = None,
size: dict[str, int] | None = None,
min_pixels: int | None = None,
max_pixels: int | None = None,
resample: PILImageResampling = None,
do_rescale: bool | None = None,
rescale_factor: float | None = None,
do_normalize: bool | None = None,
image_mean: float | list[float] | None = None,
image_std: float | list[float] | None = None,
patch_size: int | None = None,
temporal_patch_size: int | None = None,
merge_size: int | None = None,
do_convert_rgb: bool | None = None,
return_tensors: str | TensorType | None = None,
data_format: ChannelDimension | None = FIRST,
input_data_format: str | ChannelDimension | None = None,
)
Parameters:
| Name | Type | Description | Default |
|---|---|---|---|
images | `ImageInput` | Image to preprocess. Expects a single or batch of images with pixel values ranging from 0 to 255. If passing in images with pixel values between 0 and 1, set | required |
videos | `VideoInput` | Video to preprocess. Expects a single or batch of videos with pixel values ranging from 0 to 255. If passing in videos with pixel values between 0 and 1, set | None |
do_resize | `bool`, *optional*, defaults to `self.do_resize` | Whether to resize the image. | None |
size | `dict[str, int]`, *optional*, defaults to `self.size` | Size of the image after resizing. Shortest edge of the image is resized to size["shortest_edge"], with the longest edge resized to keep the input aspect ratio. | None |
resample | `int`, *optional*, defaults to `self.resample` | Resampling filter to use if resizing the image. This can be one of the enum | None |
do_rescale | `bool`, *optional*, defaults to `self.do_rescale` | Whether to rescale the image. | None |
rescale_factor | `float`, *optional*, defaults to `self.rescale_factor` | Rescale factor to rescale the image by if | None |
do_normalize | `bool`, *optional*, defaults to `self.do_normalize` | Whether to normalize the image. | None |
image_mean | `float` or `list[float]`, *optional*, defaults to `self.image_mean` | Image mean to use for normalization. Only has an effect if | None |
image_std | `float` or `list[float]`, *optional*, defaults to `self.image_std` | Image standard deviation to use for normalization. Only has an effect if | None |
min_pixels | `int`, *optional*, defaults to `self.min_pixels` | The min pixels of the image to resize the image. | None |
max_pixels | `int`, *optional*, defaults to `self.max_pixels` | The max pixels of the image to resize the image. | None |
patch_size | `int`, *optional*, defaults to `self.patch_size` | The spatial patch size of the vision encoder. | None |
temporal_patch_size | `int`, *optional*, defaults to `self.temporal_patch_size` | The temporal patch size of the vision encoder. | None |
merge_size | `int`, *optional*, defaults to `self.merge_size` | The merge size of the vision encoder to llm encoder. | None |
do_convert_rgb | `bool`, *optional*, defaults to `self.do_convert_rgb` | Whether to convert the image to RGB. | None |
return_tensors | `str` or `TensorType`, *optional* | The type of tensors to return. Can be one of: - Unset: Return a list of | None |
data_format | `ChannelDimension` or `str`, *optional*, defaults to `ChannelDimension.FIRST` | The channel dimension format for the output image. Can be one of: - | FIRST |
input_data_format | `ChannelDimension` or `str`, *optional* | The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of: - | None |
Source code in vllm/transformers_utils/processors/hunyuan_vl_image.py
237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 | |
smart_resize ¶
smart_resize(
height: int,
width: int,
factor: int = 16,
min_pixels: int = 512 * 512,
max_pixels: int = 2048 * 2048,
)
Rescales the image so that the following conditions are met:
-
Both dimensions (height and width) are divisible by 'factor'.
-
The total number of pixels is within the range ['min_pixels', 'max_pixels'].
-
The aspect ratio of the image is maintained as closely as possible.